پلتفرم معاملاتی فارکس

مثلث فراكتالي

ریاضیات پویا

همه شما حتي اگر از هندسه نيز چيزي ندانيد بارها نام آن را شنيده ايد. و حتماً مي دانيد كه «جبر، حساب و هندسه» سه شاخه مهم از رياضيات است، همين سه عنوان در رياضيات پايه گذار پيشرفت در تمام علوم محسوب مي شوند.شايد همين حس مسئوليتي كه رياضيات به تمام بخش هاي علوم دارد آن را بسيار جدي و در نظر بسياري، علمي خشك و در عين حال سخت جلوه داده است. در اين ميان هندسه نقش بسيار مهمي را حتي در شاخه هاي رياضي برعهده دارد . هندسه كه مي توان به آن علم بازي با اشكال لقب داد، خود پايه گذار مثلث فراكتالي ديگر شاخه هاي رياضي است. زيرا تمام قسمت هاي ديگر در رياضيات و علوم ديگر تا به صورت مشهودي قابل بررسي دقيق و اصولي نباشد جاي پيشرفت چشمگيري براي آنها نمي توان درنظر گرفت. با اين اوصاف، شايسته است به هندسه لقب «مادر بزرگ علوم» دهيم.شايد اگر زماني كه حوزه اطلاعاتمان از اعداد تنها به مجموعه اعداد طبيعي منتهي مي شدو معلم درس رياضيات از ما مي خواست تا ضلع سوم مثلث فراكتالي مثلث قائم الزاويه اي را كه طول هر ضلعش يك سانتي متر است اندازه بگيريم نمي توانستيم عددي را با چنين ويژگي بيابيم .سال ها پيش اقليدس با حل مسئله اي نظير اين (محاسبه قطر مربعي كه هر ضلعش 1 واحد بود)، سلسله اعداد جديدي را به مجموعه هاي شناخته شده اضافه كرد كه يكي از شاهكارهاي بي نظير در پيشرفت رياضيات و البته علوم بود. بله اين عدد عجيب و غريب «راديكال 2» بود.عموم تحصيلكردگان با هندسه اقليدسي آشنا هستند. زيرا دست كم در طول دوران تحصيل خود به اجبار هم كه بوده در كتاب هاي درسي با اين هندسه كه اصول آن بر مبناي اندازه گيري است آشنا شده اند . اما هندسه اقليدسي تنها به بررسي اشكال كلاسيك موجود در طبيعت مي پردازد. در اين هندسه اشكال و توابع ناهموار، آشفته و غير كلاسيك به بهانه اينكه مهار ناپذيرند، جايي نداشتند.بالاخره در سال 1994، طلسم يكي از تئوري هاي رياضي كه از سال1897، عنوان شده بود، شكست و « مندلبرات(1) » رياضيدان لهستاني، پايه گذار هندسه جديدي شد كه به آن هندسه بدون اندازه يا هندسه فركتالي گويند. هندسه بدون اندازه يكي از شاخه هاي جديد رياضيات است كه در برابر تفسير و شبيه سازي اشكال مختلف طبيعت از خود انعطاف و قابليت بي نظير نشان داده است. با به كارگيري هندسه فركتالي، افق روشني پيش روي رياضيدانان و محققان در زمينه بازگو كردن رفتار توابع و مجموعه هاي به ظاهر ناهموار و پر آشوب قرار گرفت .

تاریخچه هندسه فرکتالي يا هندسه فرکتال ها پديده ايست که چندي پيش پا به دنياي رياضيات گذاشت. پيش از اينکه مندلبورت اين واژه را ابداع کند، براي چنين اشکالي، از واژه «منحني‌هاي هيولايي» استفاده مي‌شد. واژه فراکتال مشتق گرفته شده از واژه لاتینی فراکتوس به معنای سنگ است که به شکل نا منظم شکسته و خرد شده . که در سال 1976 توسط رياضيدان لهستاني به نام بنوئيت مندلبرات وارد دنياي رياضيات شد.
او در سال 1987 پرفسوري خود را در رشته رياضيات گرفت.
مندلبرات وقتي که بر روي تحقيقي پيرامون طول سواحل انگليس مطالعه مي نمود به اين نتيجه رسيد که هر گاه با مقياس بزرگ اين طول اندازه گرفته شود بيشتر از زماني است که مقياس کوچکتر باشد.
فرهنگستان زبان هم واژه برخال را تصويب کرده و همچنين براي واژه فرکتالي واژه برخالي را تصويب کرده است.
واژه فركتال به معناي سنگي است كه به شكل نامنظم شكسته شده باشد.

ریاضـیات

شايد آيندگان از اينکه نشان داده ام قديمي ها همه چيز را نمي دانستند ، سپاسگزار من باشند(فرما)

فراکتال چیست؟

ما فراکتال‌ها را هر روز می‌بینیم: درختها ، کوهها، پراکنده شدن برگهای پاییزی روی زمین . به این تصویرها که در انتها قابل مشاهده است، نگاه کنید و سعی کنید شباهت بین آنها را درک کنید.
حالا به این تعریف دقت کنید: فراکتال شکل هندسی چند جزیی است که می‌توان آن را به تکه هایی تقسیم کرد که انگار هر تکه یک کپی از " کل " شکل است. حالا دوباره به مثلث فراكتالي تصویرها نگاه کنید!
به سختی بتوان باور کرد که چیزی مانند فراکتال‌ها بتواند اینقدر پیچیده و سخت باشد و در عالی ترین سطوح ریاضی به کار رود و در عین حال بتوان به شکل یک سرگرمی خوب به آن نگاه کرد. اگر بخواهیم بترسانیمتان می‌توانیم بگوییم که هندسه فراکتالی حرکت اشکال در فضا را ثبت می‌کند و یا ناهمواری دنیا و انرژی و تغییرات دینامیک آن را نشان می‌دهد ! اما راستش را بخواهید فراکتال چیز ساده ای است به سادگی ابرها یا شعله های آتش.
واژه فراکتال از ریشه ای یونانی به معنای " تکه تکه شده " و"بخش بخش" آمده است و به نحوی تعریف ریاضی اش را در خود دارد. به زبان ساده ، اشکال فراکتالی دارای 3 خاصیت عمومی هستند:
• تشابه به خود
• تشکیل از راه تکرار
• بعد کسری

تشابه به خود self similarity
گربه‌ها ، قناری‌ها و کانگوروها به هم شبیه هستند اگر به نحوی بتوانیم شباهتی بین آنها پیدا کنیم. اما در هندسه تشابه معنای خاصی دارد که حتماً آن را در کتاب ریاضی تان خوانده اید و می‌دانید که تشابه ، یکسانی اشکال در عین متفاوت بودن اندازه هاست. به زبان ساده تر اگر بتوانید با بزرگ یا کوچک کردن دو شکل آنها را درست مثل هم کنید ، آن دو متشابه اند . اما شکل های خود متشابه کدام‌ها هستند؟
اشکال زیادی وجود دارند که فراکتالی نیستند اما خود متشابه اند. به این شکل دقت کنید!
شکل کلی آن یک ذوزنقه است و خودش از ذوزنقه های کوچکتر کنار هم پدید آمده است. این یک مثال از تشابه به خود است.

حالا به این مثلث خاص نگاه کنید.

این مثلث بزرگ که نامش مثلث سیرپینسکی است از مثلثهای مشابه کوچکتر درست شده است که همین طور کوچکتر و کوچکتر هم می‌شوند.
ببینید چند سایز مثلث وجود دارد و آیا همه باهم و با مثلث بزرگ تشابه دارند؟

چند سؤال:
اگر این شکل قرمز را شکل پایه در نظر بگیریم ، در شکل آبی چند نمونه از مثلث فراكتالي آن وجود دارد؟
آیا مربع‌ها خود متشابه اند ؟ یعنی می‌توان با مربعهای کوچکتر ، مربع بزرگی ساخت. شش ضلعی‌ها چطور؟
آیا همه دایره‌ها متشابه اند ؟ آیا خود متشابه هم هستند؟

تشکیل از راه تکرار Iterative formation
مقصود از تشکیل از راه تکرار چیست؟ یعنی برای درست کردن یک فراکتال می‌توانیم یک شکل معمولی هندسی ( مثلاً یک خط) را برداریم و با آن یک شکل پیچیده تر بسازیم. بعد با آن شکل به دست آمده شکل پیچیده تری بسازیم ، و همین طور به این کار ادامه دهیم اشکال فراکتالی به این طریق به وجود می‌آیند و برنامه های کامپیوتری متعددی بر ایجاد آنها نوشته شده است. هر کدام از آنها هم اسم و رسمی برای خود دارند مثلاً مثلث سیرپنیکی که قبلاً دیدید یا :
• دانه برف کخ
• فرش سرپینسکی
• اژدهای هرتر - های وی
• مجموعه های جولیا و مندلبروت
ابعاد کسری fractional dimension
همانطور که می‌دانید ، یک نقطه بعد ندارد.
یک خط ، شکلی یک بعدی است
یک صفحه ، دو بعد دارد.
ودر آخر شکلهای حجیم ، سه بعد دارند.
اما فراکتال‌ها می‌توانند بعد کسری داشته باشند ! مثلاً 6/1 یا 2/4 . چطور چنین چیزی امکان دارد؟
اگر یک پاره خط را نصف کنیم چه پیش می‌آید ؟
حالا دو خط داریم که درست مثل هم هستند.
اگر هر دو بعد یک مربع را نصف کنیم چطور ؟ حالا چهار مربع هم اندازه داریم.
با نصف کردن هر سه بعد یک مکعب به هشت مکعب کوچکتر می‌رسیم.
به جدول زیر دقت کنید:

شکل بعد تعداد اشکال متشابه حاصله
پاره خط 1 2 1 =2
مربع 2 2 2 =4
مکعب 3 2 3 =8

چه الگویی وجود دارد ؟ به نظر می‌رسد که بعد ، همان " توان " است. یعنی برای پیدا کردن تعداد اشکال حاصله باید 2 را به توان بعد آن شکل برسانیم.
سپس می‌توانیم یک خط دیگر به این جدول اضافه کنیم:

هر شکل خود متشابه d n=2^d

دوباره به مثلث آشنای خودمان نگاه کنید.

اگر هر ضلع را نصف کنیم چند مثلث درست می‌شود؟ به خاطر داشته باشید که مثلثهای سفید جزو مثلث سیرپنیکی نیستند. با نصف کردن هر ضلع به سه مثلث می‌رسیم یعنی
:

3 عددی است بین 2 1 و2 2 . کسانی که لگاریتم بدانند ، به راحتی این مسأله را حل می‌کنند. خب می‌بینید که این عدد 5849. 1 یک عدد کاملاً کسری است !

پژوهش سرای بوعلی سینا

حال آيا در مورد «فراكتال» ‌ها (معادل فارسي آن «برخال» است)‌ چيزي شنيده‌ايد. در اين مورد در كتاب‌هاي درسي رياضي‌اتان مطالبي گفته شده است.

در واقع «برخال»‌ها موجوداتي هندسي‌اند كه هرچه آن را از نزديك نگاه كنيم شبيه شكل نخستين است مانند: «گل كلم». به اين اشيا‌ اصطلاحاً «خودمتشابه» گويند.


ایده‌ي «خود متشابه» در اصل توسط «لایبنیتس» بسط داده شد. او حتی بسیاری از جزئیات را حل کرد. در سال ۱۸۷۲ «مثلث فراكتالي کارل وایرشتراس» مثالی از تابعی را پیدا کرد با ویژگی‌های غیربصری که در همه‌جا پیوسته بود ولی در هرجا مشتق‌پذیر نبود. گراف ‌این تابع اکنون «برخال» نامیده می‌شود.

در سال ۱۹۰۴ «هلگه فون کخ» به‌همراه خلاصه‌ای از «تعریف تحلیلی وایرشتراس» ، تعریف هندسی‌تری از تابع متشابه ارائه داد که حالا به «برفدانه کخ» معروف است. در سال ۱۹۱۵ «واکلو سرپینسکی» مثلث‌اش را و سال بعد فرش‌اش (برخالی) را ساخت.

‌ایده‌ي «منحنی‌های خودمتشابه» توسط «پاول پیر لوی» مطرح شد او در مقاله‌اش در سال ۱۹۳۸ با عنوان «سطح یا منحنی‌های فضایی» و «سطوحی شامل بخش‌های متشابه نسبت به کل» منحنی برخالی جدیدی را توصیف کرد.

منحنی «لوی سي. گئورگ کانتور» مثالی از زیرمجموعه‌های خط حقیقی با ویژگی‌های معمول ارائه داد‌. این «مجموعه‌های کانتور» اکنون به‌عنوان «برخال» شناخته می‌شوند.

اواخر قرن نوزدهم و اوایل قرن بیستم «توابع تکرار شونده در سطح پیچیده» توسط «هانری پوانکاره» ، «فلیکس کلاین» ، «پیر فاتو» و «گاستون جولیا» شناخته شده بودند. با ‌این وجود بدون کمک مثلث فراكتالي گرافیک کامپیوتری آن‌ها نسبت به نمایش زیبایی بسیاری از اشیایی که کشف کرده بودند، فاقد معنی بودند.
در مثلث فراكتالي سال 1960 «بنوا مندلبرو» تحقیقاتی را در شناخت خودمتشابه‌ای طی مقاله‌ای با عنوان «طول ساحل بریتانیا چقدر است؟ مثلث فراكتالي خود متشابه‌ای آماری و بعد کسری» آغاز کرد. ‌این کارها براساس کارهای پیشین «ریچاردسون» استوار بود.
در سال ۱۹۷۵ «مندلبروت» جهت مشخص کردن شيئی که بعد « هاوسدورف بیسکویچ » آن بزرگ‌تر از بعد توپولوژیک است کلمه‌ي «برخال» را ‌ایجاد کرد.
او‌ این تعریف ریاضی را از طریق شبیه‌سازی خاص کامپیوتری تشریح کرد.

n مثلث خيام - پاسكال

حال با اين توضيح مختصر در مورد برخال‌ها برمي‌گرديم به «مثلث خيام – پاسكال» .

در مورد اين مثلث زياد شنيده‌ايم از جمله در مورد كاربرد فراوانش در نظريه‌ي اعداد و تركيبيات.

حال مي‌خواهم يك «برخال» ساده را در اين مثلث به شما نشان دهم. موضوعي كه باعث مي‌شود اين مثلث جايي را نيز در دنياي برخال‌ها – يعني سيستم‌هاي ديناميكي – پيدا كند.

مسأله خيلي ساده است، تمام اعداد زوج را در «مثلث خيام – پاسكال» پاك كنيد، آن‌چه باقي مي‌ماند برخالي معروف است با نام «مثلث سرپينسكي» :

مقالات مرتبط

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

برو به دکمه بالا